(3x^2-6)/8-x=x-2

Simple and best practice solution for (3x^2-6)/8-x=x-2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3x^2-6)/8-x=x-2 equation:



(3x^2-6)/8-x=x-2
We move all terms to the left:
(3x^2-6)/8-x-(x-2)=0
We add all the numbers together, and all the variables
-1x+(3x^2-6)/8-(x-2)=0
We get rid of parentheses
-1x+(3x^2-6)/8-x+2=0
We multiply all the terms by the denominator
-1x*8+(3x^2-6)-x*8+2*8=0
We add all the numbers together, and all the variables
-1x*8+(3x^2-6)-x*8+16=0
Wy multiply elements
-8x+(3x^2-6)-8x+16=0
We get rid of parentheses
3x^2-8x-8x-6+16=0
We add all the numbers together, and all the variables
3x^2-16x+10=0
a = 3; b = -16; c = +10;
Δ = b2-4ac
Δ = -162-4·3·10
Δ = 136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{136}=\sqrt{4*34}=\sqrt{4}*\sqrt{34}=2\sqrt{34}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{34}}{2*3}=\frac{16-2\sqrt{34}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{34}}{2*3}=\frac{16+2\sqrt{34}}{6} $

See similar equations:

| 3.6g+6=1.6g+12 | | (x+8)(x-3)=2 | | (2x^2)-x=91 | | 2x+x=28+2 | | 480=8x/ | | 6x-2x+8=24 | | 14x+30+3x+156=180 | | (D^2+2D-5)y=0 | | 5a-6a=-11 | | (3m-7)=43 | | 5=x^2/3000 | | 3x–9=7+x,x= | | 2x-14=2(x-14) | | 1.5^{x-1}=14.5 | | 1/2t-4=8 | | 9x²-12x+20=0 | | 1/3x-30=-25 | | 3x²+12x-24=0 | | 2x+5-4x=-2(-2x-5) | | 3x-½(10x+6)=15 | | (2,-9)y=-9 | | 1.5(2x+5)+2.5(-2x+7)=0.5 | | 24r=1/2r+17/2 | | 3(5-2w)=4w-7 | | 3(w-1)-(3-w)=12 | | -(2z-9)=4z | | -6(z+7)=z | | 5(y+9)=8y | | 6.4x+4.9x=30 | | 2(x-1)+½(2x+6)=4 | | 24x+42=6x | | n^2+21n-40=0 |

Equations solver categories